Реферат по математике на тему Правильные многогранники читать бесплатно

Правильные многогранники

Правильные многогранники.
Правильный многогранник, или так же известный как «Платоново тело» - это вид многогранника, гранями которого являются правильнее многоугольники (треугольник, квадрат, пятиугольник, шестиугольник и т д ) В зависимости от конкретного вида многоугольника, который является гранью многогранника, многогранники носят свои наименования:
1. Тетраэдр – гранью является правильный треугольник, количество вершин – 4, количество ребер – 6, количество граней – 4.

2. Гексаэдр (или всем известный куб) – грань-квадрат, количество вершин - 8 , количество ребер - 12 , количество граней – 6.

3. Додекаэдр – грань-пятиугольник, количество вершин - 20 , количество ребер - 30 , количество граней – 12.

Помимо тетраэдра, есть и другие многогранники, гранью которых является треугольник:
4. Октаэдр – количество вершин - 6 , количество ребер – 12, количество граней – 8.

5. Икосаэдр - количество вершин - 12 , количество ребер - 30, количество граней – 20.

Существует специальная формула, которая была придумана ученым Эйлером. Данная формула связывает число рёбер, граней и сторон многогранника простым соотношением:
В+Г=Р+2, где В – количество вершин; Г – количество граней; Р – количество ребер.

Некоторые факты из истории многогранников:

1. Многогранники известны еще задолго до Платона. Историками, археологами были найдены фигурки созданный древними, в которых четко прослеживаются формы правильных многогранников. Кроме того подобные фигуры часто выступали элементами древних архитектурных строениях.
2. Считается, что многогранники (уже с точки зрения геометрии) были открыты Пифагором. Однако по другим источникам ему принадлежит заслуга открытия лишь трех многогранников, а именно тетраэдра, гексаэдра и додекаэдра. Что же касается октаэдра и икосаэдра, их открытие приписывают древнегреческому математику Теэтету Афинскому.
3. Многогранники так же называются «Платоновыми телами» потому, что в свое время Платон в одной из своих работ сопоставил многогранники с ч етырьмя природными стихиями. Каждому многограннику соответствовала своя стихия: тетраэдру – огонь, гексаэдру (кубу) – земля, октаэдру – воздух, икосаэдру – вода.
4. Полное описание многогранников с точки зрения математики и геометрии дал в одном из своих трудов Евклид.
5. Во времена известного математика Иоганна Кеплера было известно лишь пять планет Солнечной системы. Так как это число совпадала с числом существующих многогранников, которых так же 5, он пытался найти соответствие между ними и планетами.

см. также: Все рефераты по математике